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ABSTRACT

A non—parametric measure of the difference between

sample distributions of a random variable for two classes of

data is presented. The method involves counting the number

of class reversals among the ordered set of two class data and

provides a normalized measure of class intermingling .

Applications of the method to the discrimination—feature selec-

tion problem are described .
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I. INTRODUCTION

Whenever data is collected by machine in some experiment

as for example in radar observation of some object, or the taking

of an electrocardiogram , or seismic exploration , etc., there is

often a super abundance of data collected on each radar pulse ,

single heartbeat , or single detonation , etc., of which only a

small fraction is useful for determining the distinguishing as-

pects of the particular experiment . In the case of a single

radar pulse illuminating an object there might be over 2700

items of data recorded , such as amplitude and phase for two

polarizations for perhaps hundreds of incremented rai~ges that

encompass the object. If it is desired to know what category

of object is reflecting the radar pulse, it can turn out that

only a few items out of the 2700 data are important, and if it

can be determined in advance through preliminary studies which

those important data are, then an enormous savings in computation

can be achieved by editing Out the unimportant data. This is the

classical problem of feature selection .

The purpose of this note is to describe a technique

called the method of reversals , which can be used to select what

items of data or what types of measurements are important , in

first order , for distinguishing between two categories or two

classes of subjects. It is a method for sifting through the two

class data base and quantifying the importance of each measurement1
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type. Just a few examples of two class problems are distinguishing

between threatening and non—threatening vehicles in the radar

defense case, healthy and abnormal heart patients in the electro-

cardiogram case, and the presence or absence of subterranean oil

in the seismic exploration case. Essentially the method is one

of determining the degree of intermingling of the two classes

for each kind of measurement or for a given combination of measure—

meats. If, for some particular measurement type or combination of

types, the data for the two classes is thoroughly intermingled ,

then that measurement or combination by itself is worthless for

distinguishing between the two classes. Conversely, if some

measurement or combination eas.i.ly distinguishes between the two

classes then the degree of class intermingling for it will be

small.

A number of feature extraction techniques rely on

rotating an N dimensional data space (each of the dimensions

corresponds to one of the N observables) in a manner so as to

preserve a maximum amount of discrimination information when

some of the dimensions, after rotation , are eliminated from

consideration. The choice of rotation and selection of saved

dimensions often requires ordering the eigenva~kues of some

combination matrix of the two class correlation (or covariance)

matrices If, however, the data population of one of the classes

is fewer than the number of dimensions, then the correlation or

2



covariance matrices cannot be determined and the rotation tech-

niques are inapplicable . A not infrequent example in the radar

case is to have fewer pulses of data than the number of (interest-

ing) samples in range taken for each pulse, in which case the

needed matrices cannot be formed . If the data population is

small , but large enough to estimate the required matrices , those

estimates can be very poor due to the low density of data in the

full N dimensional space. In such cases an examination of class

separability for each observable alone or some combination of a few

observables taken together can be very useful in identifying

important features for discrimination.

It is important to note here that the reversals method

is not an optimal discrimination-feature extraction technique .*

The method is useful for looking at class differences of a single

random variable , which can be a single measurement type or a

combination of measurement types. By quantifying the class

differences of the single random variables, one can rank them in

their ability to differentiate between the two classes. If the

user wishes to examine combinations of observables , to make use

of potential class separation that may reside in the correlations

*Optimality is defined in terms of some particular set of rules,
so that even optimal discrimination-feature extraction techniques
need not be good feature extraction techniques when the rules
are not well chosen for a given problem

.3



between observables , then the user must choose what combinations

of observables to examine with the technique. There are intel-

ligent methods for determining appropriate combinations of

observables (such as determining the Fisher linear classifier

projection direction for correlated pairs of observables), but

that aspect of the problem is not the focus of th is  paper . The

s i tua t ion  may be summed up as follows . Whatever separabi l i ty  is

found and ranked by the reversals technique is there , but there

is no guarantee  that all the available separation has been

uncovered .

The method of reversals is one technique among many

for quan t i fy ing  the d i f f e r e n c e s  of sing le variables  between two

classes. Other techniques, described and compared in

the last section , are the K factor method ( fi nd ing  the

separation in the class mean values normalized by the average

intra—class standard deviation) , the equal classification—error

value for a single threshold test, the distance measures

(Bhattacharyya , Kullback divergence , Matusita , etc.), and some

non—parametric tests for determining at what level of significance

the two class populations are considered different.

In the next section the reversals method is introduced

by way of a simple example.

4 
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II. AN ILLUSTRATIVE EXAMPLE

Suppose we are trying to determine the important

measurements for early diagnosis of disease X and we have data

for many kinds of measurements such as body temperature , pulse

rate, red cell count, etc. We have a data bank of these measure-

ments for a class of N1 healthy people as well as N2 people

suffering from disease X. The first step in the technique is to

ordor all the values for each measurement regardless of class.

Let an H denote each of the (N1 
= 9) healthy persons and an S

denote each of the (N2 = 7) sick persons in the illustra tion

below.

~ SSS H HHH H H H  H H  red cell
—i 0-count
lxlO 2xlO 3x10 (cells/mm 3 )

H H H H H H H S H SS S H S S S ~ pulse rate

60 70 A A A A A (counts/mm .)

S H H  H S  H S  S H H  H S  S H  S H  bo~y temp .

98.4 98.6 98.8

Next , scan along each measurement axis and count the number of

class reversals encountered . For example on the red cell count

axis there is only one reversal , where the string of S’s meets

the string of H’s. Let the reversal count be denoted by R, i.e.,

R=l for the red cell measurements . For the pulse rate measure—

5 



ment , we get R = 5, as shown by the caret symbols beneath the

axis at the reversal points. For the body temperature measurement

the reversal count is R = 9. Obviously the red cell count measure-

ment distinguishes best between the two classes for these three

axes.

Since the number of reversals on any axis will usually

increase if the number of members in the two classes is increased

(unless, for example , there is perfect separation between the

classes) , it is desired to have a normalized measure of importance

which is independent of the number of data points N
1 and N2. The

measure W defined as

A
~ R - R
-

has that property and also has the properties that W --* 1 for

perfect separation of the two classses and W —k ±C ~ 0 for those

measurements incapable of distinguishing the two classes. is

defined as the number of reversals expected if class 1 and class

2 were statistically identical for the particular measurement .

It is calculated from the formula

A 
— 

2 N1 ~2

In the present example , N1 
= 9 and N 2 = 7 for all the axes so that

= 
2 

= 7.875. The reversal measure W is then

6
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calculated for each axis.

— 
7.875 — 1 

—Wred cells — 7.875 — 1 
—

— 
7.875 — 

— 0 4]8Wpuise rate 
— 

7.875 — 1 
—

— 
7.875 — 

— 164Wtemperature
_ 

7.875 — 1 
— O •

Looking at the resultant W values we would then conclude that the

red cell count measurement is an outstanding measurement for

diagnosing disease X , the pulse rate measurement is of moderate

value , and the body temperature measurement used alone is

worthless. Negative values of W arise when more reversals are

counted than the expected number of reversals for statistically

identical classes.

The results of a d i f f e r en t  example , a defense radar

discrimination problem , are presented in Fig. 1. The radar

returns from 80 different ranges were sampled , encompassing the

body which was from 1 of the 2 classes , re—entry vehicles and

decoys. The reversal measure W is plotted for each of the 80

range gates (solid line) and for the difference combination

- p
~~ 5 (dashed line) , where P~ is the radar return in r~bnge

gate i. The difference combination is proportional to the slope

estimate of P as a function of range at the mid-range point.

7 
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Fig.l. Comparison of reversal measure W for a radar dis-
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most different in their absolute values (solid line) at
range gate 43. The profiles are statistically most differ-
ent in their slopes (dashed line) in the vicinity of range
gate 49.
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The highest values of W indicate which of these individual or

combination measurements are most capable of separating the two

classes. From the figure it can be seen that the range gates at

and near gate 43 are important on an individual basis and the

slopes of the radar return profiles are very different for the

two classes in the vicinity of range gate 49.

In order to see how W scales with various kinds of

class differences, the results of a number of calibration

exercises are presented in the following section for

statistically controlled examples. The examples demonstrate

how W increases as the class distributions become more different.

9
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III. CALIBRATION EXAMPLES

For unlike distributions of two classes of data , the

mathematics for expected reversal count and standard deviation

of reversal count is exceedingly difficult and depends on the

particular distributions considered . Consequently Monte Carlo

experiments have been employed for studying unlike distributions.

The one case where mathematical analysis is tractable is when the

two classes are identical. Those results are included briefly

here.

It is well known from the statistical theory of runs~~~
3

that when the two classes are identical the probability density

of reversal count is

fN1
- i\ fN2

_ 1

2
~~~R _ i)  ( R - l

V \~~~ / \ 2 (R odd)

(N1 +

\~ 

N
h

p (R) =

fNl
_ 
1\ /N2

- l\ fNl~ l\ 1N 2
_ 
l\

( R J ( R  
~~~~~~~ 1’ R

\/~~~~ ‘/~~~~~ \ 2 / ’ ~~~2 / (R )

(Nl + N
2\

~ 
Nh )

10
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where /a\ — a!
kb) 

— b !( a — b ) !

The expected number of reversals is = 2N 1N 2/ (N 1 + N 2 ) and

the variance is

2 2N1N 2 (2N 1N 2 — N1 
— N2)a =

(N1 + N 2 ) (N1 + N 2 l)

Consequently, E ~w} = 0 and = _____

When the class distribution densities are not

identical there are no general formulas for E IW} and since they

depend on the specific class density functions. Monte Carlo

experiments have been run for special families of the class

densities, as the two classes are made more d i f fe ren t . In the

following three cases , differences in the means , spreads , and

skewness are respectively illustrated.

a. Two Gaussians with Different Means

In a first series of experiments, two Gaussian densities

having the same standard deviation are separated by increasing

amounts between their means. At each stage of separation 100

experiments were performed, each time generating 200 random

numbers from each Gaussian distribution , counting the class

reversals, and calculating the value of W. In Fig. 2 the mean

value of W at each stage of separation is plotted , along with

11
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Fig.2. Reversal measure as a function of the separation
of the means of two Gaussian distributions with the same
spread . The abscissa is identical to the often used K
value.
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the associated error bars which extend one standard deviation

above and below the mean value .

A different measure of class separation of two

Gaussians having the same standard deviation is the equal error

value on an operating characteristic curve describing the

decision performance of a threshold test. The expected location

of the threshold for equal decision errors is where the two

Gaussian density functions cross, as seen in the sketch.

1+ decide class 2decide class 1 4-,

threshold

It can be easily visualized that when the two distributions are

pulled further apart, the equal error value diminishes. In
V 

Fig. 3 is shown the correlation between reversal measure and

equal error value in a series of 35 Monte Carlo experiments.

b. Two Gaussians wi th  Different Spreads, but the Same Mean

Here is a case where the single threshold equal error

measure is blind to differences in the distributions. The

13 
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expected equal error is always 50% regardless of how unlike

the distribution spreads are. The reversals technique is

able to detect differences in spread. The results of a series

of Monte Carlo experiments , where the standard deviation of

one Gaussian distribution is varied in stages while the other

Gaussian remains fixed , are shown in Fig . 4.

C. Two Skewed Distributions with the Same Mean and Spread

x 2 distributions with v degrees of freedom (‘. = 2,3 ,4,

5, and 6) were used in this part. The distribution skewness,

defined as p 3/a
3, increases as ~ decreases. For a fixed value of

v , 100 experiments were performed , each as follows. 200 random

numbers from the x 2 distribution were generated as the class 1 F
data. The mean of the numbers was found and then each number

V was reflected about the mean and the resultant became an element

of class 2. Thus, classes 1 and 2 had the same mean and standard

deviation , and were different only in their third and higher

central moments. An example histogram for the two class distri-

butions is shown in Fig . 5 for the case v = 3. The mean values

and standard deviations of W as a function of the difference in

sample skewness between the two distributions are shown in Fig. 6.

15
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IV. COMPARISON WITH OTHER FEATURE SELECTION TECHNIQUES

The reversals technique is a non—parametric method of

measuring the difference between two distributions of a single

random variable. Since the difference is quantified , in the

measure W , the method is useful for comparing different random 
V

variables , which can be individual types of measuremen+ s or can

be combinations of measurement types, for their ability to

separate two classes. The technique has the benefit, when the

nature of the underlying distributions are unknown , that no assump- V

tions are made about the distributions and no parameters of the

distributions are estimated . The type of scale on which the raw

measurements for the two classes are made is unimportant. For

example, the scale could be linear or logarithmic , or any other

monotonically increasing scale and the results of the ordering

of the data , and hence W , would be unaffected . The data need

be only ordinal. For example one could measure the class

difference between male and female runners in some race by com-

pletely disregarding their finishing times. All that is needed

is the order in which males and females cross the finish line.

The reversals technique is easy to implement on a

computer . All that is required is a sorting routine to order the

data and a few lines of programming to count reversals and

calculate and W. As an example , to calculate and plot W for

155 kinds of measurements (155 sorts required) for class

19 
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populations N1 = 162 and N2 = 150, the total central processor

time on a CDC 6600 computer was 10 seconds.

A number of other feature extraction techniques

automatically incorporate correlations of the measurements , such

as the methods of Fukunaga and Koontz 4 and others5 . The method s

rely on ordering the eigenvalues of matrices derived from the

class correlation or covariance matrices. Another method6

which also relies on the class covariance matrices, successively

finds Fisher linear classifier projection directions, each time

constraining the projection direction to be orthogonal to

previously found projection directions. The methods result in a

rotated multidimensional data space from which the unimportant

dimensions can be neglected . The methods are powerful and

practical for not too many variables. However , in the case of

hundreds or even thousands of variables , finding eigenvalues and

eigenvectors is computationally expensive and furthermore, the

dimensionality must not exceed the number of elements in the

smallest class. In such large dimension problems the reversals

V method can be very useful to initially reduce the number of

dimensions to a manageable number.

A number of alternative measures of class separability

exist such as the various “distance” measures7: Bhattacharyya

distance , Kullback divergence distance, Kolmogorov distance,

Matusita distance , etc. These distance measures require estimates

of the class density distributions, which can be obtained from

20
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histograms or Parzen estimates. The distance measures are

powerful in that they can be applied to several random variables

jointly. In practice the methods are limited by the problem of

sorting the data into bins and smoothing the results. Different

V results will be obtained depending on the choice of bin size ,

origin for the bins, and smoothing kernel. Considering more than

a few random variables jointly can become prohibitive in terms

of the number of bins that must be stored . Furthermore most of

the distance measures require integrals to be performed , all of

which adds to the computational expense.

One example of comparing the Bhattacharyya distance

for each of 25 kinds of measurement with the reversals measure W

is shown in Fig. 7 for radar data cf unknown distributions . In

both cases, measurements numbered 4 - 6 are found to separate

the classes best and measurements 1, 7, 13 separate the classes

least. One shortcoming of the reversals method is highlighted
V 

in this example . The Bhattacharyya distance for measurement 10

is diminished significantly compared to that for measurements

4 — 6, whereas the reversal measure is not. The effect is most

easily understood in the limiting case of perfect separability .

F If the distance between the distributions is altered , with

perfect separation being maintained , the reversal count cannot

change, whereas the Bhattacharyya distance measure detects the

alteration .

Another distance measure that has been used is the value

of K, defined as 2 Fm 2 
— m1j/ (a1 + a2), where m. and a1 are the

V 21
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Fig. 7. Comparison of the Bhattacharyya distance , B,
with reversal measure , W , when applied to 25 different
kinds of radar measurement , each having unknown dis-
tribution of the two classes. N1 = 83 , N2 = 102.
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sample mean and standard deviation for class i. This (parametric)

measure is sensitive to differences in the mean , but shares the

same disadvantages as the equal error measure, namely that it is

blind to any difference in the classes when they have the same

mean. Both the K measure and the equal error measure fail in the

examples (B) and (C), where the standard deviation and skewness

were the factors that separated the two classes. Another dis-

advantage of the technique is that the underlying true distri-

bution is characterized by only the mean value and standard

deviation. If there are multiple modes making up a class , so

that the distribution ~s multi-humped and possibly asymmetric ,

the K measure treats the distribution in the same way as if it

were single humped and symmetric. The reversal measure W requires

no assumption on the number of modes and requires no estimate of

the class mean and standard deviation and consequently is capable

of detecting any differences in the two classes, whether due to

differences in modes, symmetry , or otherwise.

Besides the distance measures, there is a whole class of

non—parametric tests whose purpose is to answer the question ,

“Are the two classes significantly different?” Some of the more

common non-parametric tests are the Kolmogorov-Smirnov test, the

Wilcoxon rank sum test, the Mann-Whitney U test and the

Wald—Wolfowitz runs test. A method of utilizing the tests as

distance measures is to find for each random variable or type of

23
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measurement the minimum level of significance at which the two

classes cannot be considered identical for the given outcome of

the test statistic . The measurement which then yields the

smallest value of the minimum level of significance is considered

best for separating the two classes. Such a method has been used

by Day and Mullet 8,9, utilizing the runs test to determine which

questions on an employment application form were most useful in

predicting job longevity for firemen.

Unfortunately the probability density functions for

the test statistics, which are for the hypothesis that the two

V classes are statistically identical, are generally quite broad ,

so that there is considerable fluctuation in the statistic

outcome from one trial to another when the two classes are only

slightly different. To illustrate this fluctuation, the results

of 20 trials on identical classes for four non—parametric tests

are compared with the reversal measure W. In each trial 500

random numbers were generated per class from the same normal

distribution . The minimum level of significance , amin , at which

the hypothesis (for a one-sided test), that the classes are

identical, must be rejected for the given outcome of the statistic

was then found . This is just the area under the wing of the

statistic probability density function measured outward from the

given outcome of the statistic . The distance measure D = 1 2
~ min

which scales from D = 0 (believe that the classes are identical)

to D = 1 (believe that the classes are completely separated), was

24
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then found for each trial for each non—parametric test. The

entries in the table below are the values of D for the non-para-

metric tests and the corresponding value of W .

~1•1 I ’!
0

1 .0 6 .07 .46 .22 — .01
2 .77 .6 7 .83 .22 — .01
3 .9 5 .81 .91 .95 — .06
4 .02 .71 .15 .73 — .04
5 .54 .90 .05 .08 .00
6 .89 .79 .89 .18 — .01
7 .92 .83 .91 .67 .03
8 .33 .62 .19 .03 .00
9 .18 .26 .37 .27 — .01

10 .87 .56 .78 .53 — .03
11 .00 .7 5 .13 .67 — .03
12 .10 .85 .08 .98 — .07
13 .63 .35 .67 .27 .01
14 .49 .07 .46 .18 .01
15 .87 .28 .64 .03 .00
16 .77 .82 .91 .27 — .01
17 .02 .45 .27 .4 9 — .02
18 .23 .95 .02 .83 .04
19 .85 .48 .74 .53 .02 V

20 .94 .80 .90 .49 .02

Std . Dev. = .37 .27 .34 .30 .03

The general result is that the standard non-parametric tests,

when modified to be used as distance measures between classes ,

lack steadiness of results compared to the reversal measure W

particularly when the classes are very similar . Al so , note must

be paid to the weaknesses of the particular non—parametric test.
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Some tests are blind to differences in the class means and others

to the class spreads.

One rather obvious point in applying any distance

measure to the two class problem is that a single value of the

measure does not illuminate the kind of class difference for

that random variable. If we are told the value of W is 0.8, we

know that the distributions are quite unlike, but we don ’t know

if they are different in their means, spreads, skewness, number of

modes, etc. A distance measure only quantifies the class

difference and further study of the nature of the difference

can be made from histograms of the class distributions.

In the discrimination problem once the dimensionality

of the data space has been reduced to a manageable size, by

whatever technique, then classifiers such as the Fisher linear

classifier , the quadratic classifier , or others can be used on

the remaining dimensions to classify the data. The classifiers
V 

will find the decision surface that divides the reduced dimension

data space in some optimal fashion, making use of, among other

things, correlations between variables that may not have been

examined by the user in the initial dimension reduction .

Consequently one would generally wish to save the maximum number

of feasible dimensions.

Besides the aspect of reducing the dimensionality of

a problem , the reversals method is useful for illuminating where
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d i f f erences are between two classes . The interpretation of class

differences is relatively easy in the reversals technique compared

to techniques that rotate a multidimensional data space.

Although the latter techniques may be optimal in some sense*, the

interpretation of how the new rotated axes (features) are important

in terms of the original observables can be difficult. In this 3

sense the reversals technique is a powerful tool; the user is in

full control of choosing the variables (individual and combination

measurement types) to isolate the class differences , one variable

at a time. The danger , of course, is that the user may neglect

to examine some combination of measurement types that is, in

fact, good for discrimination . The situation may be likened to

probing an oracle with questions on some problem . It may happen

that greater insight is achieved by asking many small questions,

each answer to which we understand , than to ask one ultimate

question whose answer is baffling .

*As one example, the Fukunaga-Koontz method is optimal in the
sense that it selects features that most typify one class and
simultaneously least typify the other class. That the technique
is not necessarily a 900d technique has been shown by a counter-
example in reference 6, where in a 3-dimensional problem the
technique selected the 2 worst dimensions for discrimination .
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